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A new numerical method that guarantees exact mass conservation is proposed to
solve multidimensional hyperbolic equations in semi-Lagrangian form. The method
is based on the constrained interpolation profile (CIP) scheme and keeps the many
good characteristics of the original CIP scheme. The CIP strategy is applied to
the integral form of variables. Although the advection and nonadvection terms are
separately treated, mass conservation is kept in the form of a spatial profile inside
a grid cell. Therefore, it retains various advantages of the semi-Lagrangian solution
with exact conservation, which has been beyond the capability of conventional semi-
Lagrangian schemes. c© 2001 Elsevier Science
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1. INTRODUCTION

In recent years, with the computing environment being improved, a demand for high-
precision, stable numerical methods is rapidly increasing in various fields of technology.
The constrained interpolation profile (CIP) scheme, developed by Yabe and co-workers
[1–4], for solving hyperbolic equations, also known as the cubic interpolated pseudopar-
ticle/propagation scheme, has attracted a great deal of attention [5]. The CIP scheme is a
low-diffusion and stable scheme and can solve hyperbolic equations with third-order accu-
racy in space [6]. This scheme has been successfully applied to various complex fluid flow
problems, covering both compressible and incompressible flows, such as laser-induced evap-
oration, shock-wave generation, elastic-plastic flow, bubble collapse, and milk crown (for
review see [7–9]). Furthermore the CIP scheme is essentially written as the semi-Lagrangian
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formulation. Therefore, it can be used for high Courant–Friedrichs–Lewy (CFL) conditions
in explicit form and is stable for multiphase flow calculations.

Recently, a great deal of attention has been paid to semi-Lagrangian schemes and some
excellent numerical schemes have been developed. These semi-Lagrangian schemes have
been widely incorporated into numerical models for atmospheric flow (see Ref. [10] for
one of the pioneering works). A review that serveys the semi-Lagrangian schemes to date
is found in Ref. [11]. The semi-Lagrangian scheme is based on a Lagrangian invariant
solution and the solution gives the time development of the value only at the spatial points.
Therefore, the semi-Lagrangian schemes are naturally associated with non-conservative
numerical formulations. In order to overcome the lack of conservation, many numerical
approaches have been studied: schemes based on a higher order Hermite interpolations [12,
13], finite-volume approaches [14], and flux-form semi-Lagrangian schemes [15] based
on the piecewise parabolic method [16]. Many applications require exact conservation
of mass. For example, when we treat black-hole formation and plasma dynamics, small
fractions of mass and charge generate a gravity wave and a large electric field, respectively,
and therefore, the exact conservation of mass is necessary to the success of the numerical
analysis. Therefore the development of the conservative semi-Lagrangian scheme should
still be worthy further effort.

It is frequently demonstrated that the CIP method shows good conservation of mass,
although the method is written in a nonconservative form. In a special case such as the
solution of the Vlasov equation, it is possible to cast and improve the CIP method to exactly
conserve mass [17]. However, it is not easy to apply this numerical technique to the solution
of general hyperbolic equations. Therefore, the development of a conservative CIP method
is earnestly desired. In such situations, authors have recently succeeded in developing new
conservative semi-Lagrangian schemes called CIP–CSL4 [18] and CIP–CSL2 [19]. The
schemes are based on the concept of the CIP scheme and preserve the excellent numerical
features of the CIP scheme. In order to include these various families of schemes, we
here extend the name CIP to mean constrained interpolation profile and CSL to mean
conservative semi-Lagrangian scheme. CSL4 and CSL2 use fourth-order and quadratic
polynomials, respectively. The schemes are written as semi-Lagrangian formulations and
provide stable solutions under large CFL with exact mass conservation. In previous paper
[18, 19], the scheme was applied to many problems in linear and nonlinear one-dimensional
hyperbolic equations.

In this paper, we shall extend the CIP–CSL2 scheme to multi-dimensional equations
and show some solutions by the schemes in two and three dimensions. The extension of
CIP–CSL4 to multi-dimensions is found in Ref. [20]. In the following section, we present
a brief introduction of the one-dimensional CIP and CIP–CSL2 schemes. Furthermore, we
propose a rational CIP–CSL2 (R–CIP–CSL2) scheme, which has additional excellent nu-
merical features such as monotone preserving and nonoscillatory features. In Section 3, the
numerical procedure for the two-dimensional scheme is detailed and some examples of so-
lutions in two dimensions are presented. Then, we describe the numerical procedure for the
three-dimensional scheme and show some numerical solutions. Furthermore, because the
fractional step technique is employed to extend the scheme to multi-dimensions although
the scheme is essentially written in the semi-Lagrangian form, we try to apply the present
multi-dimensional scheme to a semi-Lagrangian solution and examine the range of com-
putational time intervals with which the scheme can provide reasonable numerical results.
Finally, in Section 4, we summarize this paper briefly.
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2. REVIEW OF CIP AND CIP–CSL2 METHODS

2.1. CIP Method

Although nature is continuous, digitization is unavoidable for implementation in nu-
merical simulations. The primary goal of the numerical algorithm will be to retrieve the
lost information inside the grid cell between these digitized points. Most of the numerical
schemes proposed before, however, did not take care of real solutions inside the grid cell
and resolution has been limited to the grid size. The CIP method proposed by one of the
authors tries to construct a solution inside the grid cell close enough to this real solution of
the given equation with some constraints. We here explain its strategy by using an advection
equation,

∂ f

∂t
+ u

∂ f

∂x
= 0. (1)

When the velocity is constant, the solution of Eq. (1) gives a simple translational motion
of field f with a velocityu. The initial profile (solid line of Fig. 1a) moves like a dashed
line in a continuous representation. At this time, the solution at grid points is denoted by
circles and is the same as the exact solution. However, if we eliminate the dashed line as in
Fig. 1b, then the information of the profile inside the grid cell has been lost and it is hard to
imagine the original profile and it is natural to imagine a profile like that shown by the solid
line in Fig. 1c. Thus, numerical diffusion arises when we construct the profile by the linear
interpolation even with the exact solution at grid points as shown in Fig. 1c. This process is
called the first-order upwind scheme. On the other hand, if we use a quadratic polynomial
for interpolation, it suffers from overshooting. This process is the Lax–Wendroff scheme
or Leith scheme.

FIG. 1. The principle of the CIP method. (a) The solid line is the initial profile and the dashed line is an
exact solution after advection, whose solution (b) is at discretized points. (c) When (b) is linearly interpolated,
numerical diffusion appears. (d) In the CIP, the spatial derivative also propagates and the profile inside a grid cell
is retrieved.



174 NAKAMURA ET AL.

What made this solution worse? It is because we neglected the behavior of the solution
inside the grid cell and merely followed the smoothness of the solution. From this experience,
we understand that a method incorporating the real solution into the profile within a grid
cell is quite an important subject. We propose to approximate the profile as shown below.
Let us differentiate Eq. (1) with spatial variablex; then we get

∂g

∂t
+ u

∂g

∂x
= −∂u

∂x
g, (2)

whereg ≡ ∂ f/∂x stands for the spatial derivative off . In the simplest case, where the
velocity u is constant, Eq. (2) coincides with Eq. (1) and represents the propagation of a
spatial derivative with a velocityu. By this equation, we can trace the time evolution off
andg on the basis of Eq. (1). Ifg could be predicted to propagate as shown by the arrows in
Fig. 1d, it is easy to imagine that by this constraint, the solution would become much closer
to the initial profile that is the real solution. Most importantly, the solution thus created gives
a profile consistent with Eq. (1) even inside the grid cell. The importance of this consistency
has been demonstrated previously [9, 19].

If both the values off andg are given at two grid points, the profile between these points
can be interpolated by a cubic polynomial [3],

Fn
i (x) = ai X

3+ bi X
2+ gn

i X + f n
i , (3)

ai =
gn

i + gn
iup

1x2
i

+ 2
(

f n
i − f n

iup

)
1x3

i

,

bi =
3
(

f n
iup − f n

i

)
1x2

i

− 2gn
i + gn

iup

1xi
, (4)

1xi = xiup − xi ,

iup = i − sgn(ui ),

X = (x − xi ),

where sgn(u) stands for the sign ofu. Thus, the profile at the(n+ 1)th step is read-
ily obtained by shifting the profile byui1t , so that f n+1

i = Fn
i (xi − ui1t) and gn+1

i =
d Fn

i (xi − ui1t)/dx; then

f n+1
i = ai ξ

3
i + bi ξ

2
i + gn

i ξi + f n
i ,

gn+1
i = 3ai ξ

2
i + 2bi ξi + gn

i , (5)

where we defineξi = −ui1t .

2.2 CIP–CSL2 Scheme

In this section, we shall describe a method to solve the one-dimensional conservative
equation

∂ f

∂t
+ ∂(u f )

∂x
= 0, (6)

whereu is a variable now. The CIP scheme given in the previous section uses the value
f and its first-order spatial derivative∂x f = ∂ f/∂x at the computational grid points as
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constraints for constructing a profile inside the grid cell. The CIP–CSL2 [19] and CSL4
[18] schemes require an additional constraint of the value integrated over neighboring two
grid points,

ρn
i =

∫ xi+1

xi

f (x, t) dx, (7)

wheren indicates the time. Although the CIP method uses the time evolution off and
g = ∂ f/∂x as constraints to define a cubic polynomial, it would be interesting to find a way
to apply the CIP to the integrated value off instead of tof itself. The motivation to employ
this analogy stems from the following advection equation,

∂D

∂t
+ u

∂D

∂x
= 0. (8)

Interestingly, if we take a spatial derivative of Eq. (8) and defineD′ ≡ ∂D/∂x, we obtain
a conservative-type equation,

∂D′

∂t
+ ∂(uD′)

∂x
= 0. (9)

Recalling that Eq. (9) is the same as Eq. (6), we come to the idea of usingD′ = f in
Eq. (9) andD = ∫ f dx in Eq. (8). This procedure is exactly the same as that in Eq. (1),
simply replacingf by

∫
f dx, together with Eq. (2), in whichg is replaced byf . Thus the

CIP procedure can be used for a pair of
∫

f dx and f instead off and∂ f/∂x.
By this analogy, we shall introduce a function

Dn
i (x) =

∫ x

xi

f (x′, t) dx′. (10)

Dn
i (x) represents the accumulated mass fromxi to the upstream pointx. We shall use a

cubic polynomial to approximate this profile,

Dn
i (x) = φi X

3+ ηi X
2+ f n

i X, (11)

whereX = x − xi . The role of spatial gradientg in the CIP method is now played byf ,
which is the spatial gradient ofD in this scheme. By using the above relation, a profile of
f (x, t) betweenxi andxi+1 is then obtained by taking the derivative of Eq. (11):

Fn
i (x) =

∂Dn
i (x)

∂x
= 3φi X

2+ 2ηi X + f n
i . (12)

From the definition ofD in Eq. (10), it is clear that

Dn
i (xi ) = 0, Dn

i (xi+1) = ρn
i . (13)

Since∂D/∂x gives a functional valuef , it is also clear that

∂Dn
i (xi )

∂x
= f n

i ,
∂Dn

i (xi+1)

∂x
= f n

i+1. (14)
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FIG. 2. The remapping procedure gives the time evolution ofρ. The region A can be found by tracing the
trajectory.

Therefore, the coefficientsφi andηi are determined to satisfy the constraints of Eqs. (13)
and (14). As a result of the above simultaneous equations, the coefficients are determined
explicitly without any matrix solution as

φi = f n
i + f n

i+1

1x2
i

− 2ρn
i

1x3
i

(15)

ηi = −2 f n
i + f n

i+1

1xi
+ 3ρn

i

1x2
i

, (16)

where1xi ≡ xi+1− xi . It is interesting to observe by comparing Eqs. (15) and (16) with
Eq. (4) that the role off, g in Eq. (4) is played byD, f , respectively, remembering that
Dn

i (xi )− Dn
i (xi+1) = −ρn

i from Eq. (13).
The time development ofρ is determined from the volume formed by two upstream

departure points as shown in Fig. 2 and can be calculated from the classical conservative
form of the conservation equation [14]

ρn+1
i =

xi+1∫
xi

f (x, t +1t) dx =
xpi+1∫
xpi

f (x, t) dx, (17)

wherexpi is the particle position of the upstream departure point, calculated by

xpi = xi +
∫ t

t+1t
u dt. (18)

This time integration is performed along the particle trajectory. Since the profile of the
physical valuef has already been interpolated by Eqs. (12), (15), and (16), the integration
(17) can be estimated as

ρn+1
i =

xki +1∫
xpi

Fn
ki
(x) dx+

ki+1−1∑
m=ki+1

xm+1∫
xm

Fn
m(x) dx+

xpi+1∫
xki+1

Fn
l (x) dx, (19)

whereki indicates the cell which includes the departure pointsxpi and is determined by

xki < xpi < xki+1. (20)
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By using the relation
∫ x

xi
Fn

i (x) dx = ∫ x
xi
(∂Dn

i (x)/∂x) dx = Dn
i (x), we can rewrite Eq. (19)

as below and the time development ofρ is calculated:

ρn+1
i = ρn

ki
−

xpi∫
xki

Fn
ki
(x) dx+

ki+1−1∑
m=ki+1

xm+1∫
xm

Fn
m(x) dx+

xpi+1∫
xki+1

Fn
l (x) dx

= (Dn
ki+1

(
xpi+1

)− Dn
ki

(
xpi

))+ ki+1−1∑
m=ki

ρn
m. (21)

In Eq. (21), it is assumed thatki+1− 1≥ ki . In practice, the last term of the right-hand side
of Eq. (21) vanishes whenki+1 = ki .

Since Eq. (21) is written as the difference ofDn
ki
(xpi ) for the time evolution ofρ, the sum

of Dn
ki
(xpi ) over the entire computational domain will vanish exactly; thus we can get an

exact conservation relation betweenρn
i andρn+1

i by taking a summation of (21):∑
i

ρn+1
i =

∑
i

ρn
i . (22)

Equation (22) guarantees the conservation defined in terms of the sum of the integrals over
grid points

∑
i ρi defined by Eq. (7) instead of a sum over values at grid points

∑
i fi .

Next, let us turn to the time evolution of the valuef . We calculate the valuef in the
same way as the original CIP scheme. The conservation Eq. (6) is rewritten as

∂ f

∂t
+ u

∂ f

∂x
= G, (23)

whereG ≡ − f ∂u/∂x. On the basis of the time-splitting algorithm of the CIP scheme [3],
we split the solution of Eq. (23) into two steps:

advection phase

∂ f/∂t + u∂ f/∂x = 0, (24)

non-advection phase

∂ f/∂t = G. (25)

After the advection phase is solved, the non-advection phase is calculated on the basis of
values resulting from the advection phase.

In the advection phase, we make use of the local analytic solution of Eq. (24), which is
well known as the Lagrangian invariant solution:

f (xi , t +1t) = f (xpi , t). (26)

Since the profile off (x, t) betweenxki andxki+1 is given by Eq. (12), the solution of the
advection phasef ∗ is calculated as

f ∗i = Fn
ki

(
xpi

) = 3φki 〈ξ〉2+ 2ηki 〈ξ〉 + f n
ki
, (27)
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where〈ξ〉 is the distance between these two points:

〈ξ〉 = xpi − xki . (28)

It should be noticed that〈ξ〉 is neither−ui1t nor
∫ t

t+1t u dt. In Eq. (27),φki , ηki are given
by simply replacingi by ki in Eqs. (15) and (16).

After the advection phase is calculated using Eq. (27), the result of the advection phase
f ∗ is advanced to the value of the next time stepf n+1 in the non-advection phase. The
non-advection phase can be solved by conventional forward, finite difference method as

f n+1
i = f ∗i + G1t, (29)

whereG = − f ∗i (∂u(xi , t)/∂x) and the spatial derivative of the velocity∂u/∂x is approx-
imated by the simple centered finite difference. It should be noticed that althoughf is
calculated separately by Eqs. (24) and (25) in non-conservative form, the mass conserva-
tion is recovered in constructing the spatial profile off so as to satisfy Eq. (7).

Figure 3a shows the results of the linear propagation of the square wave after 1000 time
steps. We see from Fig. 3, the CIP–CSL2 scheme provides a result quite similar to the
original CIP scheme shown in Fig. 3b. As shown previously, this scheme can correctly

FIG. 3. Linear wave propagation with (a) the CIP–CSL2, (b) the CIP, and (c) the R–CIP–CSL2 after 1000
time steps withu1t/1x = 0.2.
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calculate the propagation speed of the shock wave for the Burgers equation even without
numerical viscosity [18, 19].

2.3 Rational CIP–CSL2 (R–CIP–CSL2) Method

Here, in order to show the possibility of extension of the present scheme, we point out
that we can use other interpolation functions instead of the cubic polynomial represented
by Eq. (11). For example, we can use a rational interpolation function,

Dn
rational(x) =

(κi X3+ χi X2+ φi X)

(1+ αβi X)
, (30)

which had been proposed as a rational CIP scheme by Xiaoet al. [21]. In the interpolation
function (30),α is a switching parameter. The coefficientsχi , φi , andβi are temporally
determined so that the interpolation function (30) satisfies the conditions (13) and (14) by
settingκi = 0 andα = 1 at first. By keeping only thisβi , and thenκi , χi andφi are finally
determined by the conditions (13) and (14) withα= 0. Therefore,κi vanishes whenα = 1
and the interpolation function (30) coincides with the cubic polynomial function (11) when
α = 0 (for details see [21]):

φi = f n
i + ρn

i+1αβi (31)

χi = Siαβi +
(
Si − f n

i

)/
1xi − κi1xi (32)

κi =
[

f n
i − Si +

(
f n
i+1− Si

)
(1+ αβi1xi )

]/
1xi (33)

βi =
[∣∣(Si − f n

i

)/(
f n
i+1− Si

)∣∣− 1
]/
1xi (34)

Si = ρn
i+1

/
1xi (35)

α =
{

1 for
(
Si − f n

i

)/(
f n
i+1− Si

) ≥ 0

0 otherwise.
(36)

Even for this interpolation function, the time development ofρ can be calculated accord-
ing to Eq. (21) and the solution of the advection phase forf is given by

f ∗i =
∂Dn

rational(xi + ξ)
∂x

= (3κi ξ
2+ 2χi ξ + φi )

(1+ αβi ξ)
− αβi

(κi ξ
3+ χi ξ

2+ φi ξ)

(1+ αβi ξ)2
. (37)

It had been proved that the profile interpolated by this rational function is monotone [21].
Thus, we can construct the CIP–CSL2 scheme, which has excellent numerical features
such as being monotone preserving and nonoscillatory. We show one typical result by this
rational CIP–CSL2 scheme in Fig. 3c.

3. EXTENSION TO TWO DIMENSIONS

3.1. Formulation in Two Dimensions

In this and the following sections, we shall extend the one-dimensional CIP–CSL2 scheme
to higher dimensions by the fractional step technique. By using the fractional step technique,
the one-dimensional scheme can be easily extended to a multi-dimensional scheme and we
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FIG. 4. The variables in the two-dimensional CIP–CSL2 scheme.

can avoid tedious efforts to implement the codes because the solution is performed by
reciprocal use of one-dimensional solutions.

First, in order to simplify the discussion in the following, we shall introduce the 1D
algorithm

CIPCSL1D(U, P, P N, R, RN,m, λ). (38)

An explicit procedure for the algorithmCIPCSL1Dis described in Appendix A. Thus,
the above one-dimensional CIP–CSL2 scheme is given byCIPCSL1D(u, f n, f n+1, ρn,

ρn+1, i, x).
In the two-dimensional scheme, as shown in Fig. 4, an integrated value off within a cell

surrounded by four computational grid points(i, j ), (i + 1, j ), (i, j + 1), and(i + 1, j +
1) is introduced,

ρn
i j =

∫ xi+1

xi

∫ yj+1

yj

f (x, y, t) dx dy, (39)

and the scheme conserves the sum ofρi j exactly during computation.
Let us consider a two-dimensional conservative equation in the Cartesian coordinates

x, y,

∂ f

∂t
+ ∂(u f )

∂x
+ ∂(v f )

∂y
= 0, (40)

whereu andv correspond to the velocities in thex- andy-directions, respectively.
For simplicity, in this paper, we assume thatf is a scalar and describe the implementa-

tion in the Cartesian coordinates. However, it has already been demonstrated that the CIP
scheme can handle non-scalars and be extended to non-Cartesian coordinates such as a
curvilinear coordinate system [22]. As mentioned in the previous section, the present CIP–
CSL2 and R–CIP–CSL2 schemes take over the same concept and numerical procedures as
the CIP scheme, and therefore can be easily extended to the solution of non-scalars and a
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non-Cartesian coordinate system. The implementation of this scheme in the non-Cartesian
coordinate and its application to the Navier–Stokes equation are now in progress.

It is well known that a one-dimensional solver is easily extended to a multidimensional
solver by the fractional step technique. In the fractional step technique, the solution of the
two-dimensional conservative Eq. (40) is split into two sequential solutions:

Step 1 ∂ f/∂t + ∂(u f )/∂x = 0, (41)

Step 2 ∂ f/∂t + ∂(v f )/∂y = 0. (42)

The solution of the original two-dimensional conservative equation (40) is given by sequen-
tial solution of Eqs. (41) and (42). As easily understood in view of Fig. 4, the solution of
Step 1 is given by

CIPCSL1D
(
u, f n, f step1, σ n

x , σ
step1
x , i, x

)
. (43)

We should note that the line densityσx defined by

σ n
xi j =

∫ xi+1

xi

f (x, yj , t) dx (44)

plays the same role asρ in Eq. (7) in the case of the one-dimensional algorithm in the
previous section, as clearly seen from Fig. 5a. In a similar way, using the line
density

σ n
yi j =

∫ yj+1

yj

f (xi , y, t) dy, (45)

the solution of Step 2 is given by

CIPCSL1D
(
u, f step1, f n+1, σ step1

y , σ n+1
y , j, y

)
. (46)

However, we must note thatσ step1
y is not yet obtained after Step 1. Therefore we need a

method to approximate it. This situation is quite similar to the fractional step solution of
the CIP method [2, 17].

Next, we shall discuss how to estimate the evolution ofσy in Step 1. In deriving an equation
for σy, we assume that the advection velocityu(x, y, t) is uniform from(i, j ) to (i, j + 1)
along they-direction within one cell and set tōu j (x, t) = (u(x, yj , t)+ u(x, yj+1, t))/2
for yj ≤ y ≤ yj+1. Thus, the integration of Eq. (41) in they-direction,∫ yj+1

yj

{
∂ f

∂t
+ ∂(ū j f )

∂x

}
dy= 0, (47)

leads to the following advection equation for the governing equations of a function of the
line densityσy j (x, t) =

∫ yj+1

yj
f (x, y, t) dx,

∂σy j

∂t
+ ∂(ū jσy j )

∂x
= 0. (48)
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FIG. 5. Schematic view of the numerical procedure in two dimensions. (a) Time revolution ofσx is given by a
remapping procedure. The region A can be found by the tracing the trajectory in thex-direction with the velocity
u(x, yj ). The integration along the line A gives the solution ofσx. Time evolution of f is given by interpolating
the value at a pointB. (b) Time revolution ofρ is given by a remapping procedure. The region C can be found
by the tracing the trajectory in thex-direction with the velocitȳuj (x). The volume within a regionC gives the
solution ofρ and the time evolution ofσy is given by line density along a lineD.

The above advection equation is the same as Eq. (41) except that the valuesf andu are
replaced byσy j andū j . This means thatσy j is advected in the same manner asf as clearly
seen from Fig. 5b. Furthermore, we should remember that in the solution of Step 1, as a
natural extension of the one-dimensional case, the time evolution ofρi j is calculated using
a classical conservative form,

ρ
step1
i j =

xi+1∫
xi

yj+1∫
yj

f (x, y, t +1t) dy dx=
xpi+1 j∫
xpi j

yj+1∫
yj

f (x, y, t) dy dx, (49)

wherexpi j is an upstream departure point forxi and is calculated using the equation

xpi j = xi +
t∫

t+1t

ū j (x, t) dt. (50)

In the case where the time interval1t is small enough, we can assume that the velocity
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is constant in time and the upstream departure pointsxpi j are estimated byxpi j = xi −
u(xi , yj+1/2, t)1t . It is well known that when the fractional step technique is used in each
direction of the two-dimensional advection equations, the accuracy of the trajectory in
multi-dimensional space will deteriorate for large CFL numbers. However, there are many
merits to using the fractional steps technique, such as the simple numerical procedure and
easy extension to higher dimensions. Furthermore, as will be shown later, the numerical
results are reasonably good except where the CFL number is too large.

By using a function of the line densityσy j (x, t) =
∫ yj+1

yj
f (x, y, t) dx, Eq. (49) is

rewritten as

ρ
step1
i j =

xi+1∫
xi

σy j (x, t +1t) dx =
xpi+1∫
xpi

σy j (x, t) dx. (51)

Because this is analogous to Eq. (17) butσy j is used instead off , it is obvious that the time
development ofρ can be estimated by applying the one-dimensional CIP–CSL2 scheme to
a pair ofρ andσy instead ofρ and f . Therefore, in order to calculateσ step1

y andρstep1, we
can directly apply the one-dimensional algorithm

CIPCSL1D
(
ū, σ n

y , σ
step1
y , ρn, ρstep1, i, x

)
. (52)

In the same way,σ step1
x is advanced toσ n+1

x in Step 2 by

CIPCSL1D
(
v̄, σ step1

x , σ n+1
x , ρstep1, ρn+1, j, y

)
, (53)

wherev̄i (y, t) = (v(xi , y, t)+ v(xi+1, y, t))/2.
Here, it should be noticed that the conservation ofρ is guaranteed exactly whileσ is not

conserved likef in one dimension. We summarize explicitly all calculation procedures for
the two-dimensional scheme in Appendix A.

In the above procedure,ρ does not seem to be directly connected tof but only connected
throughσx andσy, which are temporally introduced. Furthermore, in this two-dimensional
CIP–CSL2, only the one-dimensional profile off is interpolated. Hence it is not clear
whetherf (x, y, t) thus obtained can really satisfy Eq. (39). Thus, a question arises if whether
exact conservation is really attained by this whole procedure, or not. In the following, we
shall prove that the profile off thus obtained is consistent with the integrated valueρ.

3.1.1. Proof of Conservation in 2D

In Fig. 6, we illustrate the process of interpolation of the valuef (x, y, t) inside the grid
cell of xi ≤ x ≤ xi+1 and yj ≤ y ≤ yj+1. First, f at the pointA(x, yj ) between (xi , yj )
and (xi+1, yj ) is interpolated in thex-direction. If we use the quadratic polynomial similar
to Eqs. (12), (15), and (16), then we obtain

f n
(A) = 3φxi j X

2+ 2ηxi j X + f n
i j , (54)

φxi j =
f n
i j + f n

i+1 j

1x2
− 2σ n

xi j

1x3
, (55)

ηxi j = −
2 f n

i j + f n
i+1 j

1x
+ 3σ n

xi j

1x2
, (56)
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FIG. 6. The process of construction of the two-dimensional profile within a computational cell.

whereX = x − xi and1x = xi+1− xi . Similarly, we can interpolatef at the pointA′(x,
yj+1) between(xi , yj+1) and(xi+1, yj+1) as follows:

f n
(A′) = 3φxi j X

2+ 2ηxi j X + f n
i j+1, (57)

φxi j =
f n
i j+1+ f n

i+1 j+1

1x2
− 2σ n

xi j+1

1x3
, (58)

ηxi j = −
2 f n

i j+1+ f n
i+1 j+1

1x
+ 3σ n

xi j+1

1x2
. (59)

Next, the value off (x, y, t) is interpolated betweenA and A′ in the y-direction, and we
have

Fn
i j (x, y) = 3φyi j Y

2+ 2ηyi j Y + f n
(A), (60)

φyi j =
f n
(A) + f n

(A′)

1y2
− 2σ n

y(AA′)

1y3
, (61)

ηyi j = −
2 f n

(A) + f n
(A′)

1y
+ 3σ n

y(AA′)

1y2
, (62)

whereY = y− yj , 1y = yj+1− yj , andσ n
y(AA′) is the line density along the lineA− A′

and is given by the interpolation ofσ n
y in thex-direction:

σ n
y(AA′) = 3φi j X2+ 2ηi j X + σ n

yi j , (63)

φxi j =
σ n

yi j + σ n
yi+1 j

1x2
− 2ρn

i j

1x3
, (64)

ηxi j = −
2σ n

yi j + σ n
yi+1 j

1x
+ 3ρn

i j

1x2
. (65)

The above interpolation gives us the two-dimensional profile off within a computational
cell and Eqs. (54)–(59) correspond to the procedure (43), Eqs. (60)–(62) to Eq. (46), and
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Eqs. (63)–(65) to Eq. (52). If we write down the above two-dimensional interpolation, we
obtain the explicit expression

Fn
i j (x, y) =

2∑
l=0

2∑
m=0

Clm Xl Ym, (66)

where the coefficientsClm are given in Appendix B. It is verified easily from Eqs. (54)–(65)
that the interpolated profile (66) leads to the nine relations∫ xi+1

xi

∫ yj+1

yj

Fn
i j (x, y) dx dy= ρn

i j ,∫ xi+1

xi

Fn
i j (x, yj ) dx = σ n

xi j ,

∫ xi+1

xi

Fn
i j (x, yj+1) dx = σ n

xi j+1,∫ yj+1

yj

Fn
i j (xi , y) dy= σ n

yi j ,

∫ yj+1

yj

Fn
i j (xi+1, y) dy= σ n

yi+1 j , (67)

Fn
i j (xi , yj ) = f n

i j , Fn
i j (xi+1, yj ) = f n

i+1 j ,

Fn
i j (xi , yj+1) = f n

i j+1, Fn
i j (xi+1, yj+1) = f n

i+1 j+1,

and the profileFn
i j (x, y) is consistent with the definition ofσ n

xi j , σ
n
yi j , ρ

n
i j , and f n

i j . In
particular, Eq. (67) proves that the spatial profile ofFn

i j (x, y) gives the correct value ofρ
when it is integrated within a cell, thus guaranteeing mass conservation. Furthermore, in
many applications, the above two-dimensional profile off within a computational cell is
quite useful for the calculation of surface tension, for example.

3.1.2. Numerical Solution in Two Dimensions

To demonstrate the accuracy and efficiency of the present method, some numerical solu-
tions in two dimensions will be given in this section.

First, in order to examine the basic numerical features of the two-dimensional CIP–CSL2
scheme using the fractional step technique, we shall describe solutions in which the time
interval is small enough, such as CFL< 1.

We use a rectangular grid with uniform spacing1x = 1y = 1 and employ 100× 100
grid points. The time interval is determined in order to satisfy CFL≤ 0.4 in all grid points.
At the beginning of the computation, we set the value off and then the initial value ofρ
is calculated byρi j = ( fi, j + fi+1, j + fi j+1+ fi+1, j+1)1x1y/4.

At first, we apply the present method to the two-dimensional solid-body rotation problem
known as Zalesak’s solid-body problem [23]. Figure 7a shows the schematic view of this
test problem. The value off inside the cut-off cylinder is 1.0, while outside the cylinder
f = 0.0, and the solid-body rotation is defined with velocity component

u = −2πy, v = 2πx. (68)

The lateral boundary condition was made to be a free-slip boundary. Figures 7b and 7c show
profiles ofρ at the initial time and after one complete revolution. In Fig. 7, the line contour of
ρ is plotted fromρ = 0.0 toρ = 1.2 with increments of 0.1. The maximum and minimum
values aref = +1.06 and−9.24× 10−2, respectively. The present method restores well
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FIG. 7. (a) Schematic view of Zalesak’s solid-body rotation problem. The value off inside a cut-out cylinder
is 1.0, while outsidef = 0.0. The velocities are given byvx = −ωy andvy = ωx, whereω is an angular velocity
andω = 2π . Contour plots and three-dimensional views of the profile ofρ for Zalesak’s problem: (b) initial
state, (c) the computational result after one complete evolution, and (d) the computational result with the rational
interpolation function.

the shape of the initial profiles and gives a stable, weakly diffusive but nonmonotone result.
Furthermore, Fig. 7d shows the result with the R–CIP–CSL2, where it is seen that the mono-
tone and nonoscillatory properties are maintained, and the maximum and minimum values
are f = +1.00 and−3.98× 10−4, respectively. The conservation errors of total mass of
the CIP–CSL2 and R–CIP–CSL2 schemes are less than 2.40× 10−7 and 1.51× 10−8,
respectively, until the computation ends. These errors are caused by mass loss at the
free boundaries. The root mean square error and the numerical scores are represented in
Table I.

As the next example, Fig. 8 shows the propagation of a square wave at an angle of 45◦

to the computational grid orientation with the velocityu = v = 1.0. A periodic boundary

TABLE I

Results of the Solid-Body Rotation Problem with the CIP–CSL2 Scheme

and R–CIP–CSL2 Scheme: Root Mean Square Error (RMS), Relative

Error of the Total Mass Conservation (mass error), and Minimum (min)

and Maximum (max) Value of f

RMS Mass error Max Min

CSL2 1.61× 10−3 2.40× 10−3 +1.09 −9.24× 10−2

Rational CSL2 2.10× 10−3 1.51× 10−8 +1.00 −3.98× 10−4
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FIG. 8. (a) Schematic view of the advection of a square wave to the oblique direction. The value off inside
the rectangle is 1, while outsidef = 0. The computational domain is periodic inx andy. (b) A profile ofρ at an
initial time. (c) A profile ofρ after 1000 time steps with the constant velocityu = v = 1.0.

condition is used. The initial condition is

f =
{

1 (|x|, |y| < 10)

0 otherwise.
(69)

Figures 8b and 8c show the profile ofρ at the initial step and after 1000 steps, respec-
tively. The maximum and minimum values at the end of computation aref = +1.10 and
f = −5.34× 10−2, respectively, and the overshoot and undershoot of the profile off is
suppressed well.
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FIG. 9. Three-dimensional views of the time development ofρ in the fluctuating velocity field given by
Eq. (70).ρ is advected to the oblique direction and compressed and expanded severely by a large fluctuation of
the velocity.

Next, the velocity is changed to a fluctuating oblique velocity field given by

u = v = 1√
2

1

1+ 0.5 sin
[

2π
100(x + y)

] . (70)

Figure 9 shows the time development ofρ. In spite of a large velocity fluctuation, the
calculation was stably executed without severe numerical oscillation. Compression and ex-
pansion of the rectangle are correctly calculated. The comparison is made in Fig. 10 for

FIG. 10. Overview profile and line contour off at t = 98.99 using (a) the CIP–CSL2, (b) the R–CIP–CSL2,
(c) original CIP scheme using the two-dimensional interpolation procedure called type A, and (d) analytical result.
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FIG. 11. Cross section of the profile off along a linex = y at t = 98.99. The dashed line represents the
analytic solution and the solid lines represent the results of (a) present scheme, (b) present scheme using a rational
interpolation function, and (c) original CIP.

the profile of f at t = 98.99 calculated by (a) the CIP–CSL2, (b) the R–CIP–CSL2, (c) the
original CIP scheme, and (d) the analytical solution. The line contour off is plotted from
f = 0.0 to f = 3.0 with increments of 0.1. Figure 11 shows the profiles off on the line
x = y. Although it is well known that the CIP scheme excels in capturing discontinuities,
the present scheme can also model discontinuities as well as the CIP scheme. Furthermore,
as seen from the figures, the present scheme using a rational function provides the nonoscil-
latory and monotone profile. Figure 12 shows the relative error of mass conservation. It is
verified that the present scheme conserves the total mass exactly within the computational
round-off error. The numerical scores of each scheme are presented in Table II. In Table II,
the negative mass ratio means that the proportion of a volume of the negative mass to the
total volume and is calculated by

∑
ρ<0 ρi j /

∑
All ρi j .

FIG. 12. Time evolution of the relative error of the mass conservation.
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TABLE II

Results of the Wave Propagation Problem in the Fluctuating Oblique Velocity Field

with the CIP–CSL2 Scheme and R–CIP–CSL2 Scheme aftert = 98.99

Mass error Max Min Negative mass ratio

CSL2 9.09× 10−15 +2.46 −8.76× 10−2 2.01× 10−2

Rational CSL2 2.70× 10−15 +2.00 −7.10× 10−25 2.70× 10−25

CIP 3.06× 10−4 +2.46 −1.04× 10−1 2.38× 10−2

Theory — +2.80 0.00 —

Note.The proportion of the volume of the negative mass to the total volume is the negative mass ratio.

As the next example, the velocity field is set to

u = − x√
x2+ y2

, v = − y√
x2+ y2

, (71)

corresponding to a uniform convergence of the mass over the entire computational domain
into one point. Such a velocity field often appears in the solution of problems that require
exact conservation of mass, such as in the star formation. The boundary condition was
made to be a free-slip boundary. The value off within a cylinder of 40-grid radius located
at the origin is 1.0, while outside the cylinderf = 0.0 at t = 0. The time development of
ρ by using the CSL2 scheme is shown in Fig. 13a. While the theoretical minimum value
of f is always 0.0, the computed minimum value off at t = 40.0 is f = −0.600, which

FIG. 13. (a) Three-dimensional views of the time development ofρ in the velocity field given by Eq. (71) with
the CIP–CSL2 scheme. All the mass is finally compressed into the origin and condensed within one computational
cell. (b) Three-dimensional views ofρ at t = 40.0 with the R–CIP–CSL2 scheme.
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FIG. 14. Time evolution of the relative error of the mass conservation. The dotted and solid curves represent
the results of the present scheme and CIP scheme, respectively.

corresponds to 1.2× 10−2% of the maximum value off . As shown in Fig. 13b, however,
this undershooting vanishes when the R–CIP–CSL2 scheme is used. The mass converges
toward the origin as time proceeds, and att = 40 all the mass is concentrated into the
central cell as predicted theoretically from the initial condition and velocity field. Until the
computation ends aftert = 40, all the mass is stably retained at the origin. The relative
error of the mass conservation is shown in Fig. 14 as a function of time. The original
CIP scheme loses the mass for the most part around the origin where the direction of the
velocity changes, while the CIP–CSL2 scheme conserves the total mass very well until the
computation ends.

As a final example, we apply the scheme to idealized kinematic frontogenesis in me-
teorology [24] in order to demonstrate that the scheme provides good results even if the
velocity is strongly fluctuating and more complex. The details of the problem are given
by Doswell [25] and the analytical solution is known. In the problem, a circular vortex is
assumed and the velocity is given by

vx = −vT
y

r
(72)

vy = vT
x

r
(73)

vT (r ) = sech2(r ) tanh(r )/vT0, (74)

wherer =
√

x2+ y2 andvT0 is a constant which is determined so that maximum value of
vT is equal to unity. The initial condition off is distributed in they-direction and given
by

f = −tanh(y/2). (75)

As with other computational conditions such as the mesh condition or width of the domain,
except the time interval1t , the same conditions as those of Ran˜cić [24] are employed. We
use a computational domainR= {(x, y) | − 4< x < 4,−4< y < 4}and employ 60× 60
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FIG. 15. Numerical results of the non-semi-Lagrangian solution of Doswell’s frontogenesis experiment with
the CIP–CSL2 scheme and the R–CIP–CSL2 scheme att = 16. Courant number CFL= 0.4 is used. (a) Theoretical
solution, (b) results with CIP–CSL2, and (c) results with R–CIP–CSL2.

grid points. The computations are executed with the CFL= 0.4. The line contour of the
numerical result of the CIP–CSL2 scheme and the analytical result are shown in Figs. 15b
and 15a, respectively. Furthermore, Fig. 15c shows the numerical result of R–CIP–CSL2. In
each panel of Fig. 15, the line contour is plotted fromf = −0.8 to f = 0.8 at increments
of 0.2. In comparison with the theoretical solution presented in Fig. 15a, the numerical
result agrees very well with the theoretical one. This is much more evident in Fig. 16,
which shows three-dimensional views of the profile off at t = 16. As shown in these
figures, the scheme can stably calculate the fine structure around the origin. Especially
the R–CIP–CSL2 scheme provides the monotone profile off in addition to the accuracy.
The scores of the numerical results are given in Table III; RMS indicates the root mean
square. Edisp, Ediss, and Etotal are dispersion error, dissipation error, and the summation of
Edisp and Ediss, respectively. Each error is estimated in the same way as that described in
Ref. [24].



CONSERVATIVE SEMI-LAGRANGIAN SCHEME 193

TABLE III

Results of Doswell’s Frontogenesis Problem att = 16 with CFL = 0.40

(Non-Semi-Lagrangian Solution) Dissipation (Ediss), Dispersion (Edisp), and

Total (Etotal) Errors

RMS Edisp Ediss Etotal

CSL2 7.92× 10−2 6.49× 10−3 6.54× 10−4 6.56× 10−3

Rational CSL2 9.30× 10−2 8.79× 10−3 1.27× 10−4 8.92× 10−3

FIG. 16. Three-dimensional views of the numerical results of Doswell’s frontogenesis experiment with the
CIP–CSL2 scheme and the R–CIP–CSL2 scheme att = 16. (a) Theoretical solution, (b) results with CIP–CSL2,
and (c) results with R–CIP–CSL2.
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3.2. Extension to Three Dimensions

3.2.1. Formulation in Three Dimensions

Once the two-dimensional scheme is established, it is straightforward to extend it to three
dimensions. As a natural extension of the two-dimensional version, an integrated value of
f within a cell surrounded by eight computational grid points(xi , yj , zk), (xi+1, yj , zk),
(xi , yj+1, zk), (xi , yj , zk+1), (xi+1, yj+1, zk), (xi , yj+1, zk+1), (xi+1, yj , zk+1), and(xi+1,
yj+1, zk+1),

ρn
i jk =

zk+1∫
zk

yj+1∫
yj

xi+1∫
xi

f (x, y, z, t) dx dy dz (76)

is introduced and
∑

i jk ρi jk is conserved exactly by using the present three-dimensional
scheme. We make use of the fractional step technique; thus, the solution of the three-
dimensional conservation equation

∂ f/∂t + ∂(vx f )/∂x + ∂(vy f )/∂y+ ∂(vz f )/∂z= 0 (77)

is split into three sequential steps:

Step 1 ∂ f/∂t + ∂(u f )/∂x = 0, (78)

Step 2 ∂ f/∂t + ∂(v f )/∂y = 0, (79)

Step 3 ∂ f/∂t + ∂(w f )/∂z = 0. (80)

In the three-dimensional case, the procedure of each step is almost the same as that in
two-dimensional case, and the solution is given simply by repeating the one-dimensional
scheme. For example, in Step 1, the valuefi jk is advected by the one-dimensional CIP–CSL2
algorithm

CIPCSL1D
(
u, f n, f step1, σ n

x , σ
step1
x , i, x

)
, (81)

where σx is the line density shown in Fig. 17 and is given by integratingf in the
x-direction

σ n
xi jk =

∫ xi+1

xi

f (x, yj , zk, t) dx. (82)

The line densities in the other directions,σ n
yi jk =

∫ yj+1

yj
f (xi , y, zk, t) dy and σ n

zi jk =∫ zk+1

zk
f (xi , yj , z, t) dz, are advected by using the surface densitiesS instead ofρ as in

the two-dimensional solution,

CIPCSL1D
(
u′, σ n

y , σ
step1
y , Sn

xy, Sstep1
xy , i, x

)
(83)

CIPCSL1D
(
u′′, σ n

z , σ
step1
z , Sn

zx, Sstep1
zx , i, x

)
, (84)

whereu′(x, t) = (u(x, yj , zk, t)+ u(x, yj+1, zk, t))/2, u′′(x, t) = (u(x, yj , zk, t)+ u(x,
yj , zk+1, t))/2, and the surface densitiesSxy, Syz, andSzx are defined by

Sn
xyi jk =

∫ xi+1

xi

∫ yj+1

yj

f (x, y, zk, t) dy dx, (85)
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FIG. 17. A location of the variablefi jk , the line densitiesσxi jk , σyi jk , σzi jk, and the surface densitiesSxyi jk,
Syzi jk, Szxi jk in the three-dimensional CIP–CSL2 scheme.

Sn
yzi jk =

∫ zk+1

zk

∫ yj+1

yj

f (xi , y, z, t) dy dz, (86)

Sn
zxi jk =

∫ xi+1

xi

∫ zk+1

zk

f (x, yj , z, t) dz dx. (87)

Then, the task left for us is the estimation ofSstep1
yz , which is needed to advect the line

densities in the Step 2 and Step 3 solutions. Similarly to the advection equation for the line
density (48) and with the assumption that the velocity is constant foryj ≤ y ≤ yj+1 and
zk ≤ z≤ zk+1,

u(x, y, z, t) = u′′′(x, t)

= (u(x, yj , zk, t)+ u(x, yj+1, zk, t)+ u(x, yj , zk+1, t)

+ u(x, yj+1, zk+1, t))/4, (88)

we obtain the following advection equation for the surface density defined bySyz(x, t) =∫ yj+1

yj

∫ zk+1

zk
f (x, y, z, t) dz dy:

∂Syz

∂t
+ ∂(u

′′′Syz)

∂x
= 0. (89)

The above advection equation is the same as Eq. (41) except that the values off andu
are replaced bySyz andu′′′. This means thatS is advected in the same manner asf in the
one-dimensional solution. Furthermore, we should remember thatρ is just the integrated
value ofSyz in x-direction. Thus, a pair of values (ρ, Syz) corresponds to a pair (ρ, f ) in the
one-dimensional solution. Therefore, the one-dimensional CIP–CSL2 solution is applied
to the time development of (ρ, Syz), and the solutions (ρstep1, Sstep1

yz ) are given by

CIPCSL1D
(
u′′′, Sn

yz, Sstep1
yz , ρn, ρstep1, i, x

)
. (90)

By the above procedure, the set of values{ρstep1, Sstep1
xy , Sstep1

yz , Sstep1
zx , σ step1

x , σ step1
y , σ step1

z ,

f step1} that are the solution of Step 1 is calculated. We can solve Step 2 and Step 3
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similarly, and we summarize explicitly all the calculation procedures in three dimensions
in Appendix A.

The three-dimensional profile off within a computational cell is described by the form

f (x, y, z, t) =
2∑

i=0

2∑
j=0

2∑
k=0

ClmnXl YmZn, (91)

whereZ = z− zk and the 27 coefficientsClmn are determined so that the interpolated profile
(91) is consistent with the values off , σ , S, andρ in the same way as in two dimensions.
We summarize all the coefficients of this three-dimensional profile in Appendix B.

3.2.2. Cost of Computation

It is natural to pose the objection that the CIP–CSL2 uses the integrated values in addition
to the physical value and the schemes seem to be the same as other schemes that use twice
as many mesh points. We address the following points concerning such an ojection.

(a) As shown previously [19], other interpolation schemes such as the cubic spline use cu-
bic interpolation functions like CIP–CSL2 fail to give the correct result at high wave number.

(b) The cubic spline scheme uses the same cubic polynomial function as given by Eq. (3).
While the cubic spline requires matrix solutions to determine the coefficients of a polynomial
in the general cases, the coefficients in the CIP–CSL2 scheme are explicitly calculated
according to Eqs. (15) and (16). Therefore, generally in one dimension, the computational
cost of the CIP–CSL2 scheme for interpolation is expected to be much less than that of
the cubic spline and the calculation costs do not increase even if an additional variable
is introduced. Actually, the CPU time required for a simple advection problem in one
dimension is cubic Lagrange/CIP= 1.0, spline/CIP= 1.68 (the Thomas method is used
to solve the matrix), CIP–CSL2/CIP= 1.20, R–CIP–CSL2/CIP= 1.60, PPM [16]/CIP=
2.31.

(c) In the present scheme, the solution is given by the reciprocal use of the one-
dimensional scheme and we can reuse the same subroutine to calculate all kinds of val-
ues in each fractional step. Therefore, the total computational load is proportional to the
frequency of calling the subroutine. As shown in Appendix A, the number of required
subroutine calls is proportional to the dimensions and given byα × 2α−1, whereα is the
dimension. However, due to the fact mentioned in (a), reducing the grid points byβ can
giveβα+1 reduction of computational load for a fixed CFL. Therefore, the actual required
computational cost is only proportional toLt = Lone(α2α−1/βα+1), whereLone is the com-
putation cost for the calculation in one dimension. The conventional numerical results and
their comparison to the cubic spline scheme suggest that theβ is larger than 2 [17, 19].

(d) In addition to (c), in most practical applications, we use variables such as thermal
conductivity, viscosity and temporal variables for matrix solution. LetL0 be the cost for the
solution of a number of these variables; the required computational cost in thenLt + L0.
Since usuallyL0À Lt , the required computational cost of the CIP–CSL2 is similar to that
in other schemes even forβ = 1.

Furthermore, we are developing another formulation, which does not use the directional
splitting technique, and more reduction of the computational cost is expected.

3.2.3. Numerical Solution in Three Dimensions

In order to evaluate thepresentthree-dimensional solver, the problem of three-dimensional
solid-body rotation is calculated. We use a 100× 100× 100 rectangular mesh system with



CONSERVATIVE SEMI-LAGRANGIAN SCHEME 197

uniform spacing1x = 1y = 1z= 1, and the computational domain is{(x, y, z) | −50<
x < 50,−50< y < 50,−50< z< 50}. The velocityEv = (u, v, w) is set as

Ev = Eω × Er , (92)

whereEr = (x, y, z) and Eω = 2π/
√

2(0,−1, 1). In order to satisfy CFL≤ 0.2 in all grid
points, the time step interval of1t = 4.547× 10−4 is employed. In Fig. 18a a schematic
picture of this problem is shown. Initially, the center of the solid body is located at

FIG. 18. (a) Schematic view of the three-dimensional solid-body, rotation problem. (b) Initial profile of the
solid body. At the boundary and the inside,f = 1.0; elsewheref = 0.0. (c) Computational result after one
complete rotation. The pictures on the top row show the isosurface ofρ = 0.5 of the initial condition and the
computational result. The line contours of the profile ofρ on thez= k plane are shown below.
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(x, y, z) = (0,−20,−20), and the detailed profile of the initial state is drawn in Fig. 18b. At
the boundary and inside the solid body, the value off is set to 1.0, while f = 0.0 outside.
The initial value ofρ is given byρi jk = 1

8( fi jk + fi+1 jk + fi j+1k + fi jk+1+ fi+1 j+1k +
fi j+1k+1+ fi+1 jk+1+ fi+1 j+1k+1)1x1y1z. Ideally, the profile after one complete evolu-
tion should be the same as the initial one. Figure 18c shows an isosurface ofρ = 0.5 for the
numerical result and the profiles ofρ on thez= k plane att = 1.0 within−25≤ x ≤ 25
and−45≤ y ≤ 5. The line contours are drawn from 0.1 to 1.2 with increments of 0.1. The
scheme restores the initial profile well.

3.3. Semi-Lagrangian Solution

In this section, we show a result of the semi-Lagrangian solutions. Although the CIP–
CSL scheme is a semi-Lagrangian scheme as well as the CIP and the present two- and
three-dimensional numerical procedures are written in the semi-Lagrangian formulation,
too, we may lose the accuracy of the trajectory in exchange for the many merits of using the
fractional step technique such as the simple numerical procedure and easy extension to
higher dimensions. This is because the trajectory is estimated individually along each di-
rection in fractional steps. However, it is valuable to examine the efficiency of the scheme
with a large time interval.

For an example of a semi-Lagrangian solution, we apply the scheme to the idealized
kinematic frontogenesis that has already been mentioned in the two-dimensional case. The
same computational conditions except for time interval1t are employed. In the case of
CFLÀ 1, the trajectory to the upstream departure points has to be estimated accurately. For
the computation of the trajectory, we can use well-known and highly precise schemes for
ordinary differential equations such as the Runge–Kutta and the iterative method [14]. We
employed the fourth-order Runge–Kutta scheme to solve Eq. (50) (for details see [26]). In
order to examine the dependency on1t , the computations are performed with CFL= 1.061,
2.121, 4.243. The numerical results off at t = 16 with CFL= 1.061, 2.121, 4.243 are
depicted in Figs. 19b–19d. The scores of the numerical results are given in Table IV.

In comparison with the theoretical solution presented in Fig. 19a, the numerical result
with the large time interval CFL= 4.243 is slightly different from the theoretical solution
and the accuracy is degraded, while the numerical results with CFL= 1.061, 2.121 agree
well with the theoretical one.

Up to now, some excellent semi-Lagrangian schemes have been proposed, such as the
piecewise parabolic method proposed by Woodward and co-workers [16] or the piecewise
biparabolic scheme (PBM) proposed by Ran˜cić [24]. Especially, the PBM scheme has been
widely noticed recently as a small numerical diffusion method. The errors of the CIP–
CSL2 for CFL= 1.061, 2.121 are almost equal or less than the results of the PBM scheme
reported by Ran˜cić. Actually, in the solution with CFL= 1.061, dispersion, dissipation,
and total errors are about 7% smaller than for the results of the PBM scheme. On the other
hand, however, the numerical score for CFL= 4.243 which is presented in Table IV is
worse than the result of PBM scheme (see Table III in [24]). This degradation of accuracy
for a large CFL number is reasonable because we adopt the fractional step technique to
extend the scheme to multi-dimensions and the trajectory is estimated individually along
each direction in fractional steps. However, if we take account of the simplicity of the
procedure of the present scheme, we think that the error of the computational results still
remains reasonably small.
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TABLE IV

Result of Semi-Lagrangian Solutions of Doswell’s Frontogenesis Problem with

CIP–CSL2 Scheme att = 16

CFL RMS Edisp Ediss Etotal CPU

1.061 8.44× 10−2 7.32× 10−3 7.61× 10−5 7.40× 10−3 2895
2.121 1.09× 10−1 1.21× 10−2 9.29× 10−5 1.22× 10−2 1460
4.243 1.44× 10−1 2.10× 10−2 1.50× 10−4 2.11× 10−2 724

Notes.Line of CPU presents the total computation time measured in central processing unit
time on a 333-MHz Pentium II personal computer.

FIG. 19. Numerical results of the semi-Lagrangian solution of Doswell’s frontogenesis experiment with
the CIP–CSL2 scheme att = 16. (a) The theoretical solution and the numerical results with (b) CFL= 1.061,
(c) 2.121, and (d) 4.243 are represented.
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4. SUMMARY

We have extended the CIP–CSL2 scheme to the multi-dimensional conservative equation.
The line density or the surface density is introduced on each boundary of a computational
cell. The cubic polynomial function is used to estimate the mass flow and the advection.
The present scheme successfully solves the two- and three-dimensional problems with exact
mass conservation and the numerical diffusion is quite small. Furthermore, the conservative,
monotone preserving, and non-oscillatory scheme has been constructed by using the rational
interpolation function instead of the cubic polynomial.

The present scheme has many excellent numerical features and provides highly accurate,
low diffusive solutions with guaranteeing exact mass conservation. Although the scheme
adopts the fractional step technique in the extension to multi-dimensions, it provides rea-
sonably accurate results even for a semi-Lagrangian solution. When a much larger CFL
number is employed, degradation of the accuracy is unavoidable because of the fractional
step procedure. However, if we take account of the many merits of the fractional step tech-
nique, such as the simple numerical procedure and easy extension to higher dimensions, it
is concluded that the solution by the present scheme is accurate enough even in the case of
semi-Lagrangian solutions.

APPENDIX A

Here we summarize numerical procedures in the CIP–CSL2 method in two and three
dimensions. In order to clarify the solution procedure in the multiple dimensions, we shall
define the 1D algorithm of the present scheme byCIPCSL1D(U , F , F N, R, RN, m, λ).
The explicit expression of the 1D algorithm of the present scheme is given as follow:

CIPCSL1D(U , F , F N, R, RN, m, λ)

/∗ Departure point∗/

λpm = λm +
t∫

t+1t

U (λ, t) dt. (A1)

/∗Grid pointkm satisfyingλkm ≤ λpm < λkm+1 ∗/
if
(
λ j ≤ λpm < λ j+1

)
thenkm = j (A2)

〈λm〉 = λpm − λkm (A3)

1λkm = λkm+1− λkm. (A4)

/∗ Interpolation betweenλkm andλkm+1 ∗/

φkm =
Fkm + Fkm+1

1λ2
km

− 2Rkm

1λ3
km

(A5)

ηkm = −
2Fkm + Fkm+1

1λkm

+ 3Rkm

1λ2
km

. (A6)

/∗ Time development ofR ∗/
Dm = φkm〈λm〉3+ ηkm〈λm〉2+ Fm〈λm〉 (A7)
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RNm =
km+1−1∑

j=km

Rj + (Dm+1− Dm). (A8)

/∗ Time development ofF ∗/
F∗m = 3φkm〈λm〉2+ 2ηkm〈λm〉 + Fm (A9)

F Nm =
(

1− ∂U (λm, t)

∂λ

)
× F∗m. (A10)

Two-Dimensional Solver

The two-dimensional solution is given only by applying the one-dimensional solution
repeatedly. In the Step 1 solution, the sets of values (f n, σ n

x ) and (ρn, σ n
y ) are advanced to

( f step1, σ step1
x ) and (ρstep1, σ step1

y ) by applying the one-dimensional solution to each set. In
Step 2, each set of values (f step1, σ step1

y ) and (ρstep1, σ step1
x ) is advanced:

Step 1: ūi j = (ui j + ui j+1)/2 (A11)

CIPCSL1D
(
ū, σ n

y , σ
step1
y , ρn, ρstep1, i, x

)
(A12)

CIPCSL1D
(
u, f n, f step1, σ n

x , σ
step1
x , i, x

)
. (A13)

Step 2: ¯vi j = (vi j + vi+1 j )/2 (A14)

CIPCSL1D
(
v̄, σ step1

x , σ n+1
x , ρstep1, ρn+1, j, y

)
(A15)

CIPCSL1D
(
v, f step1, f n+1, σ step1

y , σ n+1
y , j, y

)
. (A16)

Three-Dimensional Solver

The three-dimensional solution is given only by applying the one-dimensional solution
repeatedly as follows.

Step 1: CIPCSL1D
(
u, f n, f step1, σ n

x , σ
step1
x , i, x

)
(A17)

u′i jk = (ui jk + ui j+1k)/2 (A18)

CIPCSL1D
(
u′, σ n

y , σ
step1
y , Sn

xy, Sstep1
xy , i, x

)
(A19)

u′′i jk = (ui jk + ui jk+1)/2 (A20)

CIPCSL1D
(
u′′, σ n

z , σ
step1
z , Sn

zx, Sstep1
zx , i, x

)
(A21)

u′′′i jk =
(
ui jk + ui jk+1+ ui j+1k + ui j+1k+1

)/
4 (A22)

CIPCSL1D
(
u′′′, Sn

yz, Sstep1
yz , ρn, ρstep1, i, x

)
. (A23)

(A24)

Step 2: CIPCSL1D
(
v, f step1, f step2, σ step1

y , σ step2
y , j, y

)
(A25)

v′i jk = (vi jk + vi+1 jk)/2 (A26)

CIPCSL1D
(
v′, σ step1

x , σ step2
x , Sstep1

xy , Sstep2
xy , j, y

)
(A27)

v′′i jk = (vi jk + vi jk+1)/2 (A28)
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CIPCSL1D
(
v′′, σ step1

z , σ step2
z , Sstep1

yz , Sstep2
yz , j, y

)
(A29)

v′′′i jk = (vi jk + vi jk+1+ vi+1 jk + ui+1 jk+1)/4 (A30)

CIPCSL1D
(
v′′′, Sstep1

zx , Sstep2
zx , ρstep1, ρstep2, j, y

)
. (A31)

Step 3: CIPCSL1D
(
w, f step2, f n+1, σ step2

z , σ n+1
z , k, z

)
(A32)

w′i jk = (wi jk + wi+1 jk)/2 (A33)

CIPCSL1D
(
w′, σ step2

x , σ n+1
x , Sstep2

zx , Sn+1
zx , k, z

)
(A34)

w′′i jk = (wi jk + wi j+1k)/2 (A35)

CIPCSL1D
(
w′′, σ step2

y , σ n+1
y , Sstep2

yz , Sn+1
yz , k, z

)
(A36)

w′′′i jk = (wi jk + wi j+1k + wi+1 jk + wi+1 j+1k)/4 (A37)

CIPCSL1D
(
w′′′, Sstep2

xy , Sn+1
xy , ρstep2, ρn+1, k, z

)
. (A38)

APPENDIX B

Here we summarize the coefficients of the two-dimensional or three-dimensional profile
within a computational cell.

Two-Dimensional Profile

Fn
i j (x, y) =

2∑
l=0

2∑
m=0

Clm(x − xi )
l (y− yj )

m for xi ≤ x ≤ xi+1 and yj ≤ y ≤ yj+1.

C00 = f n
i j

C10 = 1

1x

[
−(2 f n

i j + f n
i+1 j

)+ 3σ n
xi j

1x

]
C01 = 1

1y

[
−(2 f n

i j + f n
i j+1

)+ 3σ n
yi j

1y

]
C20 = 1

1x2

[(
f n
i j + f n

i+1 j

)− 2σ n
xi j

1x

]
C02 = 1

1y2

[(
f n
i j + f n

i j+1

)− 2σ n
yi j

1y

]
C11 = 4

1x1y

[(
2C − f n

i+1 j+1+ 2 f n
i j

)+ 3
2σ n

xi j + σ n
xi j+1

1x
+ 3

2σ n
yi j + σ n

yi+1 j

1y
+ 9ρn

i j

1x1y

]
C21 = 6

1x21y

[
−(C + f n

i+1 j + f n
i j

)+ 2
2σ n

xi j + σ n
xi j+1

1x
+ 3

σ n
yi j + σ n

yi+1 j

1y
− 6ρn

i j

1x1y

]
C12 = 6

1x1y2

[
−(C + f n

i j+1+ f n
i j

)+ 3
σ n

xi j + σ n
xi j+1

1x
+ 2

2σ n
yi j + σ n

yi+1 j

1y
− 6ρn

i j

1x1y

]
C22 = 9

1x21y2

[
C − 2

σ n
xi j + σ n

xi j+1

1x
− 2

σ n
yi j + σ n

yi+1 j

1y
+ 4ρn

i j

1x1y

]
C = ( f n

i+1 j+1+ f n
i+1 j + f n

i j+1+ f n
i j

)
.
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Three-Dimensional Profile

Fn
i jk (x, y, z) =

2∑
l=0

2∑
m=0

2∑
n=0

Clmn(x − xi )
l (y− yj )

m(y− yj )
n

for xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1 and zk ≤ z≤ zk+1.

C000= f n
i jk

C100= 1

1x

[
−(2 f n

i jk + f n
i+1 jk

)+ 3σ n
xi jk

1x

]

C010= 1

1y

[
−(2 f n

i jk + f n
i j+1k

)+ 3σ n
yi jk

1y

]
C001= 1

1z

[
−(2 f n

i jk + f n
i jk+1

)+ 3σ n
zi jk

1z

]
C200= 1

1x2

[(
f n
i jk + f n

i+1 jk

)− 2σ n
xi jk

1x

]
C020= 1

1y2

[(
f n
i jk + f n

i j+1k

)− 2σ n
yi jk

1y

]
C002= 1

1z2

[(
f n
i jk + f n

i jk+1

)− 2σ n
zi jk

1z

]
C110= 4

1x1y

[(
2Cxy− f n

i+1 j+1k + 2 f n
i jk

)+ 3
2σ n

xi jk + σ n
xi j+1k

1x

+ 3
2σ n

yi jk + σ n
yi+1 jk

1y
+ 9ρn

i jk

1x1y

]
C101= 4

1x1z

[(
2Czx− f n

i+1 jk+1+ 2 f n
i jk

)+ 3
2σ n

xi jk + σ n
xi jk+1

1x

+ 3
2σ n

zi jk + σ n
zi+1 jk

1z
+ 9ρn

i jk

1x1z

]
C011= 4

1z1y

[(
2Cyz− f n

i j+1k+1+ 2 f n
i jk

)+ 3
2σ n

zi jk + σ n
zi j+1k

1z

+ 3
2σ n

yi jk + σ n
yi jk+1

1y
+ 9ρn

i jk

1z1y

]
C210= 6

1x21y

[
−(Cxy+ f n

i+1 jk + f n
i jk

)+ 2
2σ n

xi jk + σ n
xi j+1k

1x

+ 3
σ n

yi jk + σ n
yi+1 jk

1y
− 6ρn

i jk

1x1y

]
C120= 6

1x1y2

[
−(Cxy+ f n

i j+1k + f n
i jk

)+ 3
σ n

xi jk + σ n
xi j+1k

1x

+ 2
2σ n

yi jk + σ n
yi+1 jk

1y
− 6ρn

i jk

1x1y

]
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C201= 6

1x21z

[
−(Czx+ f n

i+1 jk + f n
i jk

)+ 2
2σ n

xi jk + σ n
xi jk+1

1x

+ 3
σ n

zi jk + σ n
zi+1 jk

1z
− 6ρn

i jk

1x1z

]

C102= 6

1x1z2

[
−(Czx+ f n

i jk+1+ f n
i jk

)+ 3
σ n

xi jk + σ n
xi jk+1

1x

+ 2
2σ n

zi jk + σ n
zi+1 jk

1z
− 6ρn

i jk

1x1z

]

C012= 6

1z21y

[
−(Cyz+ f n

i jk+1+ f n
i jk

)+ 2
2σ n

zi jk + σ n
zi j+1k

1z

+ 3
σ n

yi jk + σ n
yi jk+1

1y
− 6ρn

i jk

1z1y

]

C021= 6

1z1y2

[
−(Cyz+ f n

i j+1k + f n
i jk

)+ 3
σ n

zi jk + σ n
zi j+1k

1z

+ 2
2σ n

yi jk + σ n
yi jk+1

1y
− 6ρn

i jk

1z1y

]

C111= 8

1x1y1z

[
−(2Cxyz+ 6 f n

i jk + 2 f n
i+1 jk + 2 f n

i j+1k + 2 f n
i jk+1− f n

i+1 j+1k+1

)
+ 3

2Cσx + 2σ n
xi jk − σ n

xi j+1k+1

1x
+ 3

2Cσy + 2σ n
yi jk − σ n

yi+1 jk+1

1y

+ 3
2Cσz + 2σ n

zi jk − σ n
zi+1 j+1k

1z
+ 9

2Sn
xyi jk + Sn

xyi jk+1

1x1y
+ 9

2Sn
yzi jk + Sn

yzi+1 jk

1y1z

+ 9
2Sn

zxi jk + Sn
zxi j+1k

1x1z
+ 27ρn

i jk

1x1y1z

]

C220= 9

1x21y2

[
Cxy− 2

σ n
xi jk + σ n

xi j+1k

1x
− 2

σ n
yi jk + σ n

yi+1 jk

1y
+ 4ρn

i jk

1x1y

]

C202= 9

1x21z2

[
Czx− 2

σ n
xi jk + σ n

xi jk+1

1x
− 2

σ n
zi jk + σ n

zi+1 jk

1z
+ 4ρn

i jk

1x1z

]

C022= 9

1z21y2

[
Cyz− 2

σ n
zi jk + σ n

zi j+1k

1z
− 2

σ n
yi jk + σ n

yi jk+1

1y
+ 4ρn

i jk

1z1y

]

C112= 12

1x1y1z2

[(
2Cxyz− f n

i+1 j+1k + 2 f n
i jk − f n

i+1 j+1k+1+ 2 f n
i jk+1

)
+ 3

Cσx + σ n
xi jk + σ n

xi jk+1

1x
+ 3

Cσy + σ n
yi jk + σ n

yi jk+1

1y
− 2

2Cσz + 2σ n
zi jk − σ n

zi+1 j+1k

1z

+ 9
CSxy

1x1y
− 6

2Sn
yzi jk + Sn

yzi+1 jk

1y1z
− 6

2Sn
zxi jk + Sn

zxi j+1k

1x1z
− 18ρn

i jk

1x1y1z

]
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C211= 12

1x21y1z

[(
2Cxyz− f n

i j+1k+1+ 2 f n
i jk − f n

i+1 j+1k+1+ 2 f n
i+1 jk

)
+ 3

Cσz + σ n
zi jk+ σ n

zi+1 jk

1z
+ 3

Cσy + σ n
yi jk + σ n

yi+1 jk

1y
− 2

2Cσx + 2σ n
xi jk − σ n

xi j+1k+1

1x

+ 9CSyz

1y1z
− 6

2Sn
xyi jk + Sn

xyi jk+1

1x1y
− 6

2Sn
zxi jk + Sn

zxi j+1k

1x1z
− 18ρn

i jk

1x1y1z

]
C121= 12

1x1y21z

[(
2Cxyz− f n

i+1 jk+1+ 2 f n
i jk − f n

i+1 j+1k+1+ 2 f n
i j+1k

)
+ 3

Cσx + σ n
xi jk + σ n

xi j+1k

1x
+ 3

Cσz + σ n
zi jk + σ n

zi j+1k

1z
− 2

2Cσy + 2σ n
yi jk − σ n

yi+1 jk+1

1y

+ 9CSzx

1x1z
− 6

2Sn
yzi jk + Sn

yzi+1 jk

1y1z
− 6

2Sn
xyi jk + Sn

xyi jk+1

1x1y
− 18ρn

i jk

1x1y1z

]
C221= 18

1x21y21z

[
−(2Cxyz− f n

i+1 j+1k+1− f n
i+1 jk+1− f n

i j+1k+1− f n
i jk+1

)
+ 2

2Cσx − σ n
xi jk+1− σ n

xi j+1k+1

1x
+ 2

2Cσy − σ n
yi jk+1− σ n

yi+1 jk+1

1y
+ 3Cσz

1z

− 4
2Sn

xyi jk + Sn
xyi jk+1

1x1y
− 6CSyz

1y1z
− 6CSzx

1x1z
+ 12ρn

i jk

1x1y1z

]
C122= 18

1x1y21z2

[
−(2Cxyz− f n

i+1 j+1k+1− f n
i+1 jk+1− f n

i+1 j+1k − f n
i+1 jk

)
+ 2

2Cσz − σ n
zi+1 jk − σ n

zi+1 j+1k

1z
+ 2

2Cσy − σ n
yi+1 jk − σ n

yi+1 jk+1

1y
+ 3Cσx

1x

− 4
2Sn

yzi jk + Sn
yzi+1 jk

1y1z
− 6CSxy

1x1y
− 6CSzx

1x1z
+ 12ρn

i jk

1x1y1z

]

C212= 18

1x21y1z2

[
−(2Cxyz− f n

i+1 j+1k+1− f n
i+1 j+1k − f n

i j+1k+1− f n
i j+1k

)
+ 2

2Cσx − σ n
xi j+1k − σ n

xi j+1k+1

1x
+ 2

2Cσz − σ n
zi j+1k − σ n

zi+1 j+1k

1z
+ 3Cσy

1y

− 4
2Sn

zxi jk + Sn
zxi j+1k

1x1z
− 6CSyz

1y1z
− 6CSxy

1x1y
+ 12ρn

i jk

1x1y1z

]
C222= 27

1x21y21z2

[
Cxyz− 2

Cσx

1x
− 2

Cσy

1y
− 2

Cσz

1z
+ 4CSxy

1x1y
+ 4CSyz

1y1z

+ 4CSzx

1x1z
+ 8ρn

i jk

1x1y1z

]
CSxy =

(
Sn

xyi jk+1+ Sn
xyi jk

)
CSyz =

(
Sn

yzi+1 jk + Sn
yzi jk

)
CSzx =

(
Sn

zxi j+1k + Sn
zxi jk

)
Cσx =

(
σ n

xi j+1k+1+ σ n
xi j+1k + σ n

xi jk+1+ σ n
xi jk

)
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Cσy =
(
σ n

yi+1 jk+1+ σ n
yi+1 jk + σ n

yi jk+1+ σ n
yi jk

)
Cσz =

(
σ n

zi+1 j+1k + σ n
zi j+1k + σ n

zi+1 jk + σ n
zi jk

)
Cxy =

(
f n
i+1 j+1k + f n

i+1 jk + f n
i j+1k + f n

i jk

)
Cyz =

(
f n
i j+1k+1+ f n

i jk+1+ f n
i j+1k + f n

i jk

)
Czx =

(
f n
i+1 jk+1+ f n

i+1 jk + f n
i jk+1+ f n

i jk

)
Cxyz=

(
f n
i+1 j+1k+1+ f n

i+1 j+1k + f n
i j+1k+1+ f n

i+1 jk+1+ f n
i+1 jk + f n

i j+1k + f n
i jk+1+ f n

i jk

)
.
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